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The calculation of correlation energies for polyatomic molecules is discussed. Four second-order 
perturbation expressions are considered; only the simplest, a Rayleigh-Schroedinger expansion with 
the Moller-Plesset partitioning of the Hamiltonian is invariant to an arbitrary mixing of degenerate 
orbitals and has the correct dependence on the number of particles. In the absence of degeneracies an 
iterative Brillouin-Wigner method is proposed. Calculations predict that correlation effects favor the 
non-classical form of carbonium ions. 
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I. Introduction 

The results of  ab initio molecular  orbital  (MO) calculat ions have proved to be 
extremely useful in unders tand ing  and  interpret ing mode rn  chemistry [1]. Wi th  

the prol i fera t ion of  efficient compute r  programs,  there are now ab initio M O  
calculat ions on  an  increasing wide variety of polya tomic  molecules. Depend ing  

somewhat  on the basis set used, one igenerally expects moderate ly  accurate results 
for equi l ib r ium geometries and  one-electron properties. In  certain cases, where the 
effects of corre la t ion  cancel, molecular  orbi tal  total  energies may even be used to 
predict  heats of react ion I-2]. This effective cancel lat ion of correlat ion effects is 
implicit  in all M O  calculat ions 1 which use the calculated total  energy. 

Quite  apar t  f rom those cases where M O  calculat ions may  be expected to be 
reliable, there are a mul t i tude  of s i tuat ions where correlat ion effects are k n o w n  to 
be large. The simple homolyt ic  cleavage of a b o n d  is an  example which is well 
known.  2 Similarly, M O  calculat ions canno t  describe dispersion interact ions [3]. 

1 We are dealing here solely with restricted molecular orbital theory for closed shells and do not 
consider the complicated effects implicit in an unrestricted or complex molecular orbital calculation. 
Any lowering of the energy from the restricted MO result is considered to be an effect of correlation. 

2 The incorrect dissociation limit of, for example, H 2 is basically a symmetry problem associated 
with the restricted single determinant. An unrestricted single determinant will dissociate correctly but 
in our context this is described as an effect of correlation. 
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When and where correlation effects are important, in those situations to which MO 
theory is routinely applied, is not as clear. 

A large number of methods for including the effects of correlation have been 
proposed [4-6]. Most of these have only been applied to atoms or diatomic 
molecules for reasons that are discussed below. If in a MO calculation on a molecule 
of 2N electrons, one uses a basis set of K atomic orbitals, the limiting step in the 
calculation is the manipulation of ~ K 4 two-electron integrals. As shown by the 
calculations of Clementi [7], and others, 3 this K 4 procedure can be practical for 
values of K ~  100. Our interest here is in calculating the effects of correlation when 
either N or K become large. Davidson [8] has discussed some of these practical 
problems and our discussion is closely related to his. Since, by definition, we are 
interested in relatively large molecules, we are restricted to considering only ex- 
tremely simple methods. It is not our desire to calculate all the effects of correlation 
but rather to investigate simple correlation corrections to the MO result, which, 
while including the major effects, remain practical. It is then hoped that the can- 
cellation of terms difficult to include in a calculation will be an order of magnitude 
better than in the corresponding MO calculation. We will only consider two possi- 
bilities 4 - low-order perturbation theory and configuration interaction (CI) which 
includes only doubly-excited configurations 5. 

The unavoidable first step in these two methods, and probably any others, is 
the matrix transformation of two-electron integrals from atomic to molecular 
orbitals. If all the integrals are required, as is the case for CI or perturbation theory 
beyond second-order, then the number of operations in this step is proportional 
to K s. We thus immediately have a problem which is an order of K more difficult 
than the original MO calculation. For practical purposes then, we will not consider 
any procedure in which the limiting step is not this integral transformation. If  we 
consider second-order perturbation theory then not all the transformed integrals 
are normally required and the transformation step can be reduced to an N K  4 

operation. In practice the difference between N K  4 and K 5 may be important 6. 
As shown by Davidson [81, the cost of a doubly-excited CI calculation is pro- 

portional to N 2 K  4 while that for a pth order perturbation calculation is N 2 K  2p- 2. 

Thus for large N and K both CI and third-order perturbation theory, while 
comparable to each other, are an order of N more difficult than the transforma- 
tion and two orders of N more difficult than the MO calculation. Once the trans- 
formation has been accomplished, however, a second-order perturbation 
calculation involves N 2 K  2 operations and is relatively easy. Thus, as a practical 
correction to large molecular orbital calculations, we limit ourselves, for the 
present, to second-order perturbation theory and any modifications which 
do not include a step more expensive than a K 5 transformation. 

3 For example, see Ermler,W.C., Kern,C.W.:  J. Chem. Phys. 58, 3457 (1973). 
4 There are a number  of  other possibilities we might consider but none seem to us as simple and 

practical for large molecules as the perturbation schemes suggested here. 
s We could include singly-excited states in a simple manner  but their effect on the total energy is 

generally small. We are discussing all double excitations and not  a truncated expansion as might perhaps 
be used in conjunction with a natural  orbital analysis. 

6 N K  4 and K s are of  course the limiting values assuming all integrals are held in core. In practice, 
for values of K ~  40, the t ransformation may actually be faster than the MO calculation. 
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2. Second-Order Perturbation Theory 

In this section we present the appropriate perturbation equations describing 
our calculations and briefly discuss previous related calculations. 

We are considering restricted closed-shell molecular orbital calculations which 
produce K molecular orbitals ~ and orbital energies at, which satisfy the Fock 
eqtmtion, 

f~(1)O~(1) = eAb,(1) (2.1) 

where f~(1) is the one-electron Fock operator. N of the K molecular orbitals, 
~a, ~b . . . .  are occupied in the closed-shell ground state g,o and are termed occupied 
or hole orbitals. The other K-N orbitals ~r, qJ . . . . .  are termed virtual or particle 
orbitals. Two particle orbitals ~, and ~b, replace two hole orbitals ~ ,  and ~b in ~O ° 
to give the doubly-excited spin-adapted configurations ~o that we will be ~ 
considering. 

The usual procedure in perturbation theory, particularly many-body pertur- 
bation theory, is to choose the Moller-Plesset [9] (MP) unperturbed Hamiltonian 

o which is a sum of the one-electron Fock operators minus a constant term, 

N 

aqo o = ~ f~_  Z ~, 2(bbaa) - (baba), (2.2) 
i=i a b 

such that ~b ° and @o are eigenfunctions of ~ o with respective eigenvalues Eo ° and 
E o, 

E°.= ~ 2ca - ~ ~, 2(bbaa) - (baba) 
a a b 

0 0 H F  = (~o[ ~'~ [O0) = E0 , (2.3) 
0 0 E,  = Eo + er + e, - ~a - eb, (2.4) 

where ~ is the exact electronic Hamiltonian and by definition the excited state 
~o is formed from ~o ° by the excitations ~,  ~ 0r and ¢'b --+ ~ .  The two-electron 
integrals are defined by, 

(O'kl)=,~b*(1)~j(1)(r~2) ~*(2)~(2)d%dz2. (2.5) 

With this particular partitioning of the Hamiltonian, the first-order energy Eo* is 
zero. Two common expressions for the second-order energy of the ground state 
are those of the Brillouin-Wigner (BW) expansion, 

EoZ(BW) = - ~ '  [(~bo°}~//-[0°)] 2 
, E O _ E  ° , (2.6a) 

and the Rayleigh-Schroedinger (RS) expansion, 

EZ(RS) = - ~ '  [(~b°[3¢:[~°)[ 2 
. E o - e g  , 

(2.7) 
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where f"  = x 4 g - ~  o and Eo is the exact electronic energy in our original basis of 
K orbitals, 

Eo=Eo ° + E ~ + E  g + . . .  (2.8) 

The prime on the summations denotes that the ground state, 0o o is explicitly 
excluded from the sum over the states 0 °. If in Eq.(2.6a) we take for E o its value 
to second-order, we obtain the iterative closed form, 

Eg(BW) = - Z '  ](0°I~U[0°)Iz (2.6b) o o_sg(BW) . E .  - E o 

The above choice for the unperturbed Hamiltonian is not unique [10] and in 
particular we wish to consider one other choice, the Epstein [11]-Nesbet [12] (EN) 
unperturbed Hamiltonian y o  

0 0 0 0 y o  = ~ o + Z (O, [ ~//~ t0, )10, ) (O,  l, (2.9) 
n 

~-= ~ -  J 7  ° . (2.10) 

This particular choice 7 applied to the Rayleigh-Schroedinger expansion has been 
termed Epstein-Nesbet perturbation theory by Claverie et al. [13] and modified 
Rayleigh-Schroedinger perturbation theory by Rubinstejn and Yaris [14]. This 
choice is such that the eigenvalues of Y7 ° ( i . e . ,  Eo ° and ~o) are the expectation 
values of the full Hamiltonian, 

~o = (~01 jt~ [0 0 ) -~o-~-t~P -~o,- ~-o (2.11) 

o o ro=-<0.1 10°> 
=-E°o + AE,. (2.12) 

If the 0 ° are chosen as spin-adapted configurations, then the actual form of the 
excitation energy AE,, in terms of orbital energies and two-electron integrals, 
depends on the particular type of doubly-excited state. With this choice of the 
unperturbed Hamiltonian the first-order energy Eo ~ is also zero and since 
( O ° [ f  [0 °) = ( 0 ° [ 7  [0°), we have 

E2(Bw) -- - 2 '  1@°°1< 10°)]2 (2.13a) 
. ~ - o _  E o  ' 

;g(RS) = - 2 '  f<0°f f0°>12 (2.14) 

If we again make the approximation of setting E o to its second-order value, we 
obtain 

Eg(BW) = -  Z ' 1<000['~ ]l/An0>]2 (2.13b) 
. ~ o  _ ~ o  _ E g ( B W )  

7 Note that the summation without the prime is meant to include @o. 
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We are thus considering four procedures, either an RS or BW perturbation 
expansion and either an MP or EN partitioning of the Hamiltonian. The numera- 
tors in each of  the cases are identical and the calculations differ in the choice of 
energy denominators. The two Brillouin-Wigner procedures require an iterative 
calculation, but since the second-order sum goes as N Z K  2 compared to the N K  4 

or K 5 transformation, this is not a practical problem. Setting the self-consistent 
term in the denominator of the two BW procedures (Eqs.(2.6b) and (2.13b)) to 
zero, reduces them to the two RS procedures (Eqs.(2.7) and 2.14)), so that the RS 
calculations provide convenient initial guesses and lower bounds to the corres- 
ponding iterative BW calculations. The EN procedures, using the Epstein-Nesbet 
partitioning of  the Hamiltonian, have in their energy denominators the difference 
in the expectations values of the true Hamiltonian for ~ko ° and ~0 °, i.e., A E , ,  while 
the MP procedures, using the Moller-Plesset partitioning of the Hamiltonian, 
have the difference in orbital energies of the molecular orbitals involved in the 
double excitation, i.e., e r + e S - ~, - e b. 

The RS,MP procedure has not yet been extensively applied to molecules; 
finite basis set calculations have been reported for H2 [ 15], N 2 [ 16], butadiene [13], 
and linear polyenes [17]. Most calculations to date have favored the Epstein- 
Nesbet partitioning of  the Hamiltonian and a number of  RS,EN calculations 
have recently appeared [13, 17-27]. Grimaldi [16] has calculated the BW,EN 
terms for N2. No BW,MP calculations appear to have been reported. At this point 
it seems convenient to consider the four procedures in relation to a model system. 

3. Two-Orbital Model System 

Here we wish to illustrate certain aspects of the four perturbation procedures 
using a model system. The general results are not new, but the model provides an 
explicit demonstration of several considerations. For  simplicity we consider a 
minimal basis calculation on H2 at a bondlength of 1.4 a.u., with an optimum 
Slater-orbital exponent of 1.19. We thus have one hole-orbital ~1 with orbital 
energy e~ = -0 .594931  a.u. and a particle-orbital ~b 2 with orbital energy e2= 

+ 0.607689 a.u. The two-electron integrals are 

J l l  =(1111)=0.652613 a.u., 

J22 = (2222) = 0.676110 a.u., 

J12 = (2211) = 0.642272 a.u., 

K12 = (2121) = 0.172548 a.u. 

(3.1) 

(3.2} 

(3.3) 

(3.4) 

The ground state ~0o ° has energy ~i~v ~ o  ~ ° = 2 e l - J l l  and the one doubly- a-'0 =*"0 =*~0 
excited state ~,o has energy E°=EgF+2(e2-~O or N°=EgF+2(e2-~0+ 
J11 + J22 - 4J12 -~- 2K12 = Eo nr  + 2(ez - gl) + D. The four expressions for the second- 
order energy are 

Eo2(RS) - -K22  -0.012378 a.u. (3.5) 
2(g2 - - e l )  
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- g?z 
Eg(BW) = 2(e2_el)_E0g(BW)- -0.012315 a.u. (3.6) 

E2(RS) = -K22 - -0.019717 a,u. (3,7) 
2(g2 -- gl) + D 

- K~2 
Eo2(BW)=2(e2_el)+D_~og(BW)=-0.019467 a.u. (3.8) 

The RS,MP result corresponds to the usual second-order result of many-body 
perturbation theory. The RS,EN result is identical except that the energy denomi- 
nator has been shifted by the quantity D. By expanding the RS,EN denominator it 
is seen that the additional terms introduced in going from the RS,MP to the 
RS,EN result are just the particle-particle, hole-hole and particle-hole ladders 
first summed by Kelly [28] and noticed previously by Claverie et al. [13]. The 
additional self-consistent correction in the BW results corresponds to the summa- 
tion of the so-called rearrangement diagrams [29]. In our model the effect of the 
rearrangement diagrams is small, but in systems with large correlation energies 
this correction can be expected to be significant. Since we have only one particle 
orbital and one hole orbital, all diagrams are diagonal and the BW,EN result is 
equal to the exact CI result s. In the general case, it is easy to show that the BW,EN 
result corresponds to diagonalizing the doubly-excited CI matrix, if the matrix 
elements corresponding to interactions between different doubly-excited states 
are neglected. At this point the BW,EN procedure appears to be the obvious one 
to use. There are, however, other considerations to be taken into account, as can 
be seen by slightly expanding on our previous model. 

We consider now two minimal basis hydrogen molecules separated by a large 
distance so that they do not interact 9. A molecular orbital calculation will thus 
lead to two hole orbitals-q,1, which we consider to be localized on the first molecule 
and ~'~, localized on the second molecule, both with orbital energies el equal to 
our previous value. Similarly, we will have two particle orbitals I//2 and ~,~ with 
orbital energy e2. There are now two doubly-excited states which contribute, 
corresponding to excitation of 2 electrons localized on one or the other of the two 
molecules. The formulae for the second-order energies are identical to (3.5)-(3.8) 
except that K~Zz is replaced by 2KZz. The calculated second-order energies are, of 
course, twice the previous result for the RS procedures, but because of the self- 
consistent term, the correlation energy (calculated from doubly-excited CI, or 
either of the BW procedures) for two non-interacting H2 molecules is not twice the 
correlation energy of one H2 molecule. This deficiency of the BW expansion or of 
doubly-excited CI is a basic result of many-body theory as discussed by Brueckner 
[30] and Goldstone [31]. The numerical values are Eoa(BW)=-0.024507 a.u. 

s In this model the singly-excited state is of different symmetry and the CI with one doubly-excited 
state gives the exact result for the basis. 

9 A discussion of the additivity problem similar to ours has been given by J. P. Malrieu, Application 
des techniques de thdorie des champs aux probl~mes d N-corps (unpublished lecture notes), and by K. 
Shulten, Ph.D. Thesis, Harvard University (1974), unpublished. 
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and EoZ(BW)=-0.038456 a.u. It is necessary in the CI calculation to include a 
quadruply excited state (i.e., simultaneous double excitations on each molecule) 
in order that the energy be additive. For n non-interacting minimal basis H2 
molecules, the correlation energy calculated from BW or doubly-excited CI 
becomes n½K12 for large n. 

Another problem becomes apparent when we consider the degeneracy of ~1 
and O't or  I/12 and ~ .  In particular, consider the equivalent delocalized orbitals, 

~1 = 2- ½(~k 1 + 0't), (3.9) 

~', = 2 -~ (01 -  ~'~), (3.10) 

~2 = 2-~(~b2-~) ,  (3.11) 

t}~ = 2- }(qJ2 + ~ ) ,  (3.12) 

There are now five doubly-excited states which interact with the ground state. 
Evaluating the appropriate matrix elements, one finds that E2(RS) and E2(BW) 
are identical to the localized orbital expressions, but that the RS,EN result 1° 
is not Eq.(3.7) multiplied by a factor of two, but is instead, 

E2(RS) = -K22 K22 = -0.026564 a.u. (3.13) 
2(~2-~1) +D/2 2(~2-~I )+D+2Jlz -K12 

The E2(BW) result is identical to the above except for the self-consistent term in 
each denominator and leads to a second-order energy of -0.026250 a.u. As 
opposed to the MP partitioning, the EN procedures are not invariant to an arbi- 
trary mixing of degenerate orbitals. This result is true in general; the MP Hamil- 
tonian (2.2) is invariant to an arbitrary unitary transform of degenerate orbitals, 
whereas the EN Hamiltonian (2.9) is not. The doubly-excited CI result is, of course, 
invariant, but since the mixing of degenerate orbitals changes the relative magnitude 
of various off-diagonal CI matrix elements, the neglect of certain ones, as in the 
BW,EN procedure, leads to invariance. 

Thus of the four procedures only the simplest, the RS,MP procedure, is in- 
variant to a mixing of degenerate orbitals and has the correct dependence on the 
number of particles. It appears that as a general unambiguous procedure for 
investigating the major effects of correlation in polyatomic systems, the RS,MP 
procedure is unique. In special cases all four procedures may be appropriate, and 
the relative convergence of the four perturbation expansions is of interest. In the 
many-body sense, the RS,EN; BW,MP; BW,EN procedures all include higher 
terms or diagrams and might be expected to be more accurate, order by order, 
than the RS,MP procedure. Claverie et al. [-13] indeed found the RS,EN pro- 
cedure to converge faster than the RS,MP procedure for butadiene, and this group 
has consistently preferred the EN partitioning. Grimaldi [16] has studied the 
convergence to the doubly-excited CI result of the RS,MP and BW,EN procedures 

~0 This calculation uses the 2 by 2 diagonalization of the four open-shell problem discussed in the 
next section. 



182 N.S. Ostlund and M. F. Bowen 

for Nz and in contrast to our model example or the results of Claverie et al. [13], 
he found the RS,MP expansion to be more accurate at all orders. It appears that 
the relative converge of the various procedures to the appropriate CI result will 
require further study. It may be that the convergence properties will depend on the 
particular system. 

4. Details of the Calculations: Ambiguity of the 4-Open-Shell Case 

In this section we give details of the second-order perturbation calculation in 
order to describe a second invariance problem associated with the EN Hamiltonian. 

The doubly-excited states can be divided into closed-shell, 2-open-shell and 
4-open-shell cases. The closed-shell wavefunctions are 

O~r=[r r ] ,  (4.1) 
a - + r  

where the bar refers to beta spin and lrrl is a normalized single determinant which 
does not explicitly show the electrons not involved in the excitation. The relevant 
matrix elements are 

( O°[ ~if I0,  ~ ~) = (rara), (4.2) 
a ~ r  

(~9~ ~ ~]~  [Oa ~ ~) =-~° = ~ o  + 2e~-  2e~ + (aaaa) + (rrrr) - 4(rraa) + 2(rara). (4.3) 
a ~ r  a ~ r  

The 2-open-shell wavefunctions and matrix elements are 

q,  ~ r= 2-@{Ir~ I + 1,71}, (4.4) 
a - - + s  

0~ ~ r = 2-~{labl + ]bal}, (4.5) 
b ~ r  

(O°[ ~t/" IO~ ~ ~) = 2~ (sara), (4.6) 
a - - + s  

( O°ol ~tf [Oa ~ ~) = 2~ (rbra), (4.7) 
b ~ r  

a - - + s  a ~ s  

+ (aaaa) + (ssrr) + (srsr) - 2(ssaa) - 2(rraa) + (sasa) + (rara), (4.8) 

b ~ r  b - - + r  

+ (rrrr) + (bbaa) + (baba) - 2(rrbb) - 2(rraa) + (rbrb) + (rara). (4.9) 

The calculation with these excited states is straightforward. The calculation of 
hole-hole and particle-particle integrals (bbaa), (baba), (ssrr) and (srsr), however, 
requires a K s step as opposed to the particle-hole integrals which require only a 
N K  4 step. These hole-hole and particle-particle integrals are only needed in the 
EN procedures. 

The 4-open-shell case generates two linearly independent singlets which we 
arbitrarily choose to be 
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A _(12)-÷{2[ras~l÷21a;b~l_l~;bl÷la~sNl÷l~bsl_l~-~b~l}, (4.10) ~ a  ---~r - -  
b--*s 

=  {la r l + ]ars-b I + Irab l + Is brl}, (4. l l) 
b--*s 

10a = 3 ~ {(rasb) - (rbsa)}, (4.12) 
b~- s  

(0o° ["K 1~,0 n .  ~) = (rasb) + (rbsa), (4.13) 
b ~ s  

A - - 0  
• (Oaa --, r[ jt'~ IOa ~ ~) - -  E o  + ~r + gs - -  ~a - -  eb + (bbaa) - ( b a b a )  + (ssrr) - ( s r s r )  

b--+s b ~ s  

- (ssbb) - (ssaa) - (rrbb) - (rraa) + (3/2){(sbsb) + (sasa) + (rbrb) + (rara)}, (4.14) 

(~p~. ,i • [ ~  , )  = ~ o  + e, + t s -  ~a -  eb + (bbaa) + (baba) + (ssrr) + (srsr) - (ssbb) 
b ~ s  b - ~ s  

- (ssaa) - (rrbb) - (rraa) + ½{(sbsb) + (sasa) + (rbrb) + (rata)}.  (4.15) 

Quite apart from any problems involving orbital degeneracy, there is another 
invariance problem here, associated with the fact that, since one is neglecting the 
off-diagonal matrix element, 

<~:~ I L,> = (3~/2){(sbsb)- (sasa) - (rbrb) + (rara)}, (4.16) 
b ~ S  b ~ s  

the calculation will give different results depending on which particular represen- 
tation of the two linearly-independent singlets one chooses, since (4.16) depends 
on this choice. Other authors [32] have avoided this problem by using for each 
energy denominator, the average of (4.14) and (4.15). We have chosen instead to 
diagonalize each 2 x 2 problem in the process of performing the second-order sum. 
The results of some initial calculations are given in the next section. 

5. Results 

Since the EN procedures are most directly related to a perturbation expansion 
of the doubly-excited CI matrix, we have initially applied the RS,EN and BW,EN 
methods to potential curves for H z and HF and compared the results with those 
obtained from a doubly-excited CI calculation, as shown in Figs. 1 and 2, respec- 
tively. The MO calculation on H 2 is that of Fraga and Ransil [33] using Is, 2s, and 
2p~ Slater atomic orbitals with equal but optimized exponents at each internuclear 
distance. The MO calculation on HF is a minimal basis Slater orbital calculation 
[34] with fixed best-atom exponents. The BW calculations properly correct for the 
poor dissociation behavior of the restricted MO calculations. The RS calculations, 
on the other hand, blow up at large bondlengths when the correlation energy 
becomes large and the self-consistent term in the BW denominators becomes 
critical in reproducing the CI result. The BW results appear to be a lower bound 11 

ix The bounding properties of Brillouin-Wigner perturbation theory have been discussed by 
P. O. L6wdin, Perturbation theory and its applications in quantum mechanics. C, H. Wilcox (Ed.) New 
York: Wiley 1966. 
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,,=, 

~ BW,EN 
m ~  + DOUBLY-EXCITED CI . / ~  

T 

i I i l t t ~ l l l ~ l l l l l ~ - i i i i i l , , : l ~ p t l  
kO,O0 1.00 2,00 3.00 4.00 5.00 fi. O0 

BONDLENGTH (AU) 

Fig. 1. Potential Curves for H a using Epstein-Nesbet Partitioning 

to the CI values for the HF calculation but not for the Ha calculation. The BW 
perturbation calculations approximate the CI results very well, even at long bond- 
lengths. A BW rather than an RS expansion is thus required if second-order 
perturbation theory is to properly correct for the poor dissociation behavior of a 
restricted MO calculation. 

There has recently been considerable theoretical interest in the relative stability 
of classical and non-classical carbonium ions [35~41]. As a test of our four pro- 
cedures we have calculated correlation energies for the classical and non-classical 
forms of the vinyl and ethyl cations, using the ab initio STO-3G basis of Hehre 
et al. [42], with standard exponents, and the 4-31G basis of Ditchfield et al. [43]. 
The calculations were performed on an IBM 370/155. The largest calculation 
(N= 6, K =  28) required the following times for the various steps: integral evalua- 
tion, 4.1 rain. ; SCF, 7.5 min. ; short (NK 4) transformation, 3.6 min. ; long (K s) 
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r 

T 

t 

MOLECULAR ORBITAL 
C) RS,EN 
'~ BW,EN 
+ DOUBLY-EXCITED CI 

i 

'i.00 1.50 2.00 2.50 3.00 3.50 
BONDLENGTH (AU) 

q. O0 

Fig. 2. Potential Curves for HF using Epstein-Nesbet Partit ioning 

transformation, 14.9 min., correlation calculation, 0.2 min. The molecular orbital 
results [38, 40] are given in Table 1. The STO-3G and 4-31G MO calculations 
strongly favor classical structures for both cations, although the larger basis 
reduces the relative stability of the classical ethyl cation. More elaborate MO 
calculations [40, 41], using basis sets which include polarization functions, reduce 
the relative stability of the classical vinyl cation from our 19-20 kcal mol-1 to 
5 [41] or 6 [40] kcal mol- 1 and predict the classical and non-classical forms of the 
ethyl cation to have energies which differ by 1 kcal tool- ~ or less. Zurawski et al. 

[41], using a pair approximation based on natural orbitals have, with their polar- 
ized basis sets, calculated the effects of correlation on the relative stability of vinyl 
and ethyl cations. They find that the correlation energy favors the non-classical 
forn ' l s .  

Our results for the correlation energy are given in Table 2. Both basis sets and 
all four procedures give the same qualitative results. The calculations predict that 
correlation effects strongly favor the non-classical structure, in agreement with 
Zurawski et al. [41]. In particular, our simplest RS,MP procedure with the larger 
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T a b l e  1. M o l e c u l a r  o r b i t a l  energ ies  

T o t a l  e n e r g y  ( H a r t r e e s )  AE(kca l  m o l -  1) 

N o n - c l a s s i c a l  C la s s i ca l  

C 2 H  + 

S T O - 3 G  - 7 6 . 1 3 3 7 4 "  - 7 6 . 1 6 5 4 0  b 19.87 

4 - 3 1 G  - 76 .94913 c - 76 .97973 d 1 9 . 2 0  

C z H  ~- 

S T O - 3 G  - 77 .38986  e - 77 .40805 f 11.41 

4 - 3 1 G  - 78.186800 - 78 .19852 h 7.35 

T h e  o p t i m u m  S T O - 3 G  g e o m e t r y  ha s  n o t  been  p u b l i s h e d  so we used  the  o p t i m u m  

4 - 3 1 G  g e o m e t r y ,  Ref .  40. 

b O p t i m u m  g e o m e t r y ,  Ref .  38. 

c O p t i m u m  s t r u c t u r e  V, Ref .  40. 

d O p t i m u m  s t r u c t u r e  IV,  Ref .  40. 

O p t i m u m  s t r u c t u r e  I I I ,  Ref .  38. 

f O p t i m u m  s t r u c t u r e  I, Ref .  38. 

g O p t i m u m  s t r u c t u r e  V I I I ,  Ref .  40. 

h O p t i m u m  s t r u c t u r e  VI,  Ref .  40. 

T a b l e  2. Va l enc e  c o r r e l a t i o n  ene rg ie s  (kca l  m o l - 1 )  

RS,MP BW,MP RS,EN BW,EN 

S T O - 3 G  

C 2 H ~  

N o n - c l a s s i c a l  - 81.82 - 77.23 - 117.61 - 104.53 

C l a s s i c a l  - 70.43 - 66.98 101.49 - 91.23 

D i f f e r e n c e  - 11.39 - 10.25 - 16.12 - 13.30 

C 2 H  ~- 

N o n - c l a s s i c a l  - 71.05 - 67.91 - 96.60 - 88.88 

C l a s s i c a l  - 61.54 - 59.27 - 81.40 - 76.33 

Di f f e r ence  - 9.51 - 8.64 - 15.20 - 12.55 

4-31 G 

C 2 H  ~- 

N o n - c l a s s i c a l  - 110.54 - 103.19 - 146.65 129.81 

C l a s s i c a l  - 9 7 . 7 1  - 9 2 . 0 4  - 129.15 - 115.92 

Di f f e r ence  - t2 .83  - 11.15 - 17.50 - 13.89 

C2H + 
N o n - c l a s s i c a l  - 108.07 - 101.77 - 136.86 - 124.24 

C l a s s i c a l  - 100.86 - 95.47 - 125.41 115.37 

D i f f e r e n c e  - 7.21 - 6 .30 - 11.45 - 8.87 

4-31G basis gives 12.8 kcal tool -1 favoring the non-classical vinyl cation and 
7.2 kcal mol- 1 favoring the non-classical ethyl cation, which are in remarkable 
agreement with their values of 12.7 and 7.4. 

The Brillouin-Wigner calculations necessarily give smaller total correlation 
energies than the corresponding Rayleigh-Schroedinger calculations. The EN 
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Procedures give larger total correlation energies than the MP procedures. The 
magnitudes of the total correlation energies thus follow the trend RS,EN> 
BW,EN > RS,MP > BW,MP. The same trend is apparent in the energy differences. 
Surprisingly, the total valence correlation energy is larger for the vinyl cation than 
the ethyl cation, with the minimal STO-3G basis. In going to the larger 4-31G 
basis, the correlation energy difference increases slightly for the vinyl cation, but 
decreases for the ethyl cation. Without polarization functions, the molecular 
orbital calculations so strongly favor the classical forms that only for the ethyl 
cation is the prediction of relative stability overturned by inclusion of the correla- 
tion energy; nevertheless, our correlation results, in combination with those of 
Ref. [41] and the results of larger basis molecular orbital calculations, suggest 
that the favored species is the non-classical one. 

6. Conclusion 

Of the standard variational (CI) and perturbation methods for including the 
effects of correlation, we conclude that, for large calculations on polyatomic 
molecules, one is presently limited to second-order perturbation theory if the cal- 
culation is not to be much more difficult or costly than the original molecular 
orbital calculation. Of four second-order expressions investigated, the simplest 
is a Rayleigh-Schroedinger expansion with Moller-Plesset partitioning. This 
procedure which uses differences in orbital energies for excitation energies is the only 
one which is both invariant to mixing of degenerate orbitals and has the correct 
dependence on the number of particles. It is preferred as a general unambiguous 
first correction to the Hartree-Fock result. When degeneracies are not a problem, 
Brillouin-Wigner expansion with the Epstein-Nesbet partitioning appears to be 
most likely to reproduce doubly-excited CI results. The BW,EN procedure 
corrects for the poor behavior of restricted molecular orbital calculations on 
dissociation, so that it may make practical the calculation of potential surfaces for 
larger systems. Calculations on vinyl and ethyl cations correlate well with the recent 
results of Zurawski et al. [41], on the importance of correlation in the non- 
classical carbonium ions. In future papers we plan to further explore the effects of 
correlation in polyatomic systems. 
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